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ABSTRACT 
 

We report on the first demonstration of quantum cascade detectors based on ZnO/ZnMgO quantum wells grown by 
molecular beam epitaxy on an m-plane ZnO substrate. The sample is processed in the form of square mesas with special 
attention paid to the passivation of the side facets. Photocurrent spectroscopy reveals a resonance at 2.8 µm wavelength 
slightly blue-shifted with respect to the intersubband absorption peak at 3 µm wavelength. The photocurrent persists up 
to room temperature. The peak responsivity amounts to 0.15 mA/W under irradiation at Brewster’s angle of incidence of 
the top surface of the mesas. 
 

1. INTRODUCTION 
 
Wurzite ZnO/ZnMgO is appearing as a new material for intersubband (ISB) devices. First observation of ISB absorption 
in this material system has been reported for c-plane quantum well (QW) structures. 1 However, these QWs are the siege 
of huge internal electric fields because of  the polarization discontinuity and between the well and barrier materials. 
Recently m-plane ZnO/ZnMgO heterostructures have opened new prospects for ISB devices. 2 Indeed, the absence of 
internal electric field for this particular orientation greatly simplifies the design of quantum cascade devices. This is the 
case for quantum cascade detectors (QCD). 
 
QCDs are photovoltaic devices. 3, 4 With respect to quantum well infrared (QWIPs) photoconductors, the absence of dark 
current in QCDs is a key point for enhancing the signal-to-noise ratio. As illustrated in Figure 1, one stage of the multi-
period active region of a QCD device consists of an active quantum well, where the ISB absorption takes place, and an 
extractor stage whose purpose is to transfer the photoexcited electrons from the active QW to the next period active QW. 
As a result, a photovoltage is generated across the device which can translate in a photocurrent if the device is connected 
to a load resistor. The design of the extractor stage usually relies on multiple QWs to achieve a staircase of bound 
electronic states separated by the energy of one longitudinal optical (LO) phonon in order to benefit from an efficient 
electron LO-phonon scattering between the states. So far, QCDs have been demonstrated in the arsenide, antimonide, III-
nitride and ZnCdSe/ZnCdMgSe material systems in the wavelength range from 1 to 84 µm. 3, 12  
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     Figure 2. Conduction band profile of one period of the ZnO/Zn0.6Mg0.400 QCD. The red arrows show the intersubband absorption 
in the active QW while the green arrows show the electron scattering paths in the extractor. 
 

3. SAMPLE GROWTH 
 
The sample was grown on m-oriented ZnO substrates (Crystec) in a MBE system equipped with zinc (Zn) and 
magnesium (Mg) cells and one gallium (Ga) cell for n-type doping. Prior to growth, the substrates were annealed at 1065 
°C under an oxygen (O) atmosphere to reveal the atomic steps. The atomic oxygen was provided by a plasma cell 
operating at 420 W with an oxygen-flow of 0.3 sccm. The substrate temperature was set to 420 °C during the growth. 
The Zn and O fluxes were adjusted to be close to stoichiometry to limit the defect concentration and resulted in a growth 
rate of 170 nm/h. The 2.6 nm thick active QWs were n-doped with Ga at a concentration of 2x1019 cm-3. The 20 period 
active region was grown on top of a 1 µm thick ZnO bottom contact layer doped with Ga at 2x1019 cm-3 and was capped 
with a 100 nm thick top ZnO contact layer Ga-doped at the same concentration. An optical inspection reveals no cracks 
in the sample after growth. The sample was investigated by X-ray diffraction spectroscopy (XRD). The period of the 
active region is found to be close to the nominal thickness within one monolayer (0.23 nm). 
 
Similar samples consisting of ZnO/ZnMgO superlattices were investigated by scanning transmission electron 
microscopy (STEM) and atomic probe tomography (APT). 16 These structural characterizations confirm that the 
interfaces are abrupt and that the actual thickness of the ZnO QWs is within ±1 monolayer close to the nominal 
thickness. However, due to the different adatom diffusion during growth along the c- and a-axis in the plane of the 
layers, a spatially coherent corrugation develops starting from the bottom contact layer up to the cap layer. In addition, 
APT reveals that the Mg concentration in the barriers varies by ±10% in absolute values at the bottom and the top of the 
corrugations. 
 

4. OPTICAL SPECTROSCOPY 
 
The infrared transmission of the sample was probed using a Fourier transform infrared spectrometer. The sample was 
mechanically polished with facets at 45° angle to form a multi-pass waveguide with two internal reflections. Figure 3 
shows the TM-polarized transmission divided by the TE transmission at 77 K and 300 K. The TM-polarized ISB 
absorption is peaked at 416 meV (2.98 µm wavelength) with a full width at half maximum (FWHM) of 112 meV at 77 
K. The peak absorption is blue-shifted with respect to the design target wavelength. This is a consequence of the 
depolarization shift. This effect is quite large because of the rather high doping of the active QW and large effective 
mass of ZnO. 17 Simulations accounting for this effect together with Poisson and exchange correlation, 17 and using the 
experimentally observed broadening of the transition, predict a peak absorption at 3 µm wavelength, in agreement with 
the experimental value. The absorbance per QW is on the order of 5.8x10-3. 
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Based on the calculated 0.6 nm ISB dipole length and on the experimental FWHM, the 2D electron density in the active 
QW is estimated to be 4.6x1012 cm-2. The latter value corresponds to a 1.8x1019 cm-3 volume concentration which is 
close to the nominal doping concentration. The Fermi energy with respect to the ground state of the active QW is 
deduced to be 45.7 meV at 77 K. 

 
     Figure 3. Transmission spectrum at 77 K of the QCD sample for TM polarized light divided by the spectrum for TE- polarized 
light. 
 
 

5. DEVICE PROCESSING AND ELECTRCAL CHARACTERIZATIONS 
 
The 10x10 mm2 sample was processed as 260 square mesas with a size of 10x10, 20x20, 30x30, 50x50, 75x75 and 
100x100 µm2, respectively. The metallization of the top contact was restricted to the perimeter of the mesa in order to 
allow surface illumination at Brewster’s angle of incidence (62°). In order to suppress the surface leakage currents, the 
devices were treated with H2O2 at 95°C after etching of the mesas in a CH4-based reactive ion etching plasma. 18 Figure 
4 shows  optical microscope images of the processed devices. 
 
 

 
 

     Figure 4. Top-view optical microscope images of various size QCDs after processing. 
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The I-V characteristics performed on all mesas reveal that 86% of all QCD devices are operational. Figure 5 left shows 
the I-V characteristics measured at room temperature of various QCDs with a size of 100x100 µm2. One can notice a 
negligible dispersion between the I-V curves of the various QCDs. The resistance at zero bias, R0, is in the range of 1.42-
1.52 kΩ at 300 K. Figure 5 right presents the current density versus voltage (J-V) characteristics at 300 K for all sizes of 
QCDs. The absence of dispersion between the curves is a clear indication that the current is proportional to the surface 
and consequently that the sidewall leakage is negligible at room temperature thanks to the passivation procedure. When 
decreasing the temperature down to 77 K, the J-V characteristics of all mesa sizes are no more proportional to the 
surface. The I-V characteristics are found to be proportional to the mesa perimeter. This is a clear indication that the 
current at low temperatures is dominated by sidewall leakages. In addition, R0 is found to be inversely proportional to the 
mesa perimeter and not to the mesa surface. The R0 value increases from 71.7 kΩ (1.52 kΩ) at 300 K to 1.75 MΩ (0.18 
MΩ) at 77 K for the 10x10 µm2 (100x100 µm2) mesas, respectively. An Arrhenius plot of R0A reveals an activation 
energy at room temperature around 180 meV. This activation energy value at 300 K is close to the energy difference 
between the ground state of the first extractor and the ground state of the active QW. 13 This means that the resistance at 
zero bias at room temperature is limited by the non-resonant tunneling from the ground state of the active QW to the first 
extractor QW state. 

 
     Figure 5. (left) I-V characteristics at 300 K of 17 100x100 µm2 QCD devices. The inset shows a top-view optical image of one of 
the QCD. (right) J-V characteristics of all size QCD functional devices at room temperature. 
 

6. QCD DEVICE CHARACTERIZATION 
 

 
     Figure 6. Photocurrent spectra at 77 K for TM- (red curve) and TE- (green curve) polarized light of a 100x100 µm22 QCD. The dip 
at 400 meV is due to CO2 absorption. The transmission spectrum of the filter is shown by the blue curve. 
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Photocurrent (PC) spectroscopy was performed on the 100x100 µm2 mesas QCDs using the FTIR spectrometer. The 
glow-bar source was mechanically chopped and a lock-in amplifier was used to detect the photoresponse of the QCDs. 
The QCDs were surface illuminated at Brewster’s angle of incidence with a 10 cm focal length parabolic mirror. Figure 
5 shows the photocurrent spectra for TM- and TE-polarized light at 77 K. The photocurrent spectrum is strongly TM-
polarized as expected from a detector relying on ISB absorption. The residual TE-polarized signal may originate from 
diffraction effects on the facets of the mesas. The PC spectra are peaked at 2.8 µm wavelength (443 meV) with a FWHM 
of 97 meV. The PC spectrum is blue-shifted with respect to the absorption spectra. The narrower linewidth and the 
spectral shift suggest that the electron transfer between the active QWs and the extractor region may be favored in the 
plane of the layers in barrier regions containing a higher Mg content. The photocurrent persists up to room temperature. 
 
The responsivity of a typical device was calibrated under illumination by a 1200° C black-body source and using a 
narrow band-pass filter centered at 2.7 µm wavelength close to the PC peak wavelength. The results corrected for the 
filter and cryostat window transmissions as well as the spot size onto the detector reveal a peak responsivity for TM-
polarized light on the order of 0.15 mA/W under illumination of the top surface at Brewster’s angle of incidence. Note 
that this value could be enhanced by both increasing the doping of the active QWs and making use of a grating or a 45° 
wedge configuration. The response could also be improved by more than two orders of magnitude using a waveguide 
configuration for a perfect TM coupling and complete absorption. 15, 19 
 
Based on the responsivity, one can estimate the transfer efficiency defined as the ratio of the photocurrent to the sum of 
the photocurrent and the parasitic current arising from electrons in the excited state relaxing back to the ground state of 
the same active QW. 15 The transfer efficiency is found to be of the order of ~1.15%. Based on simulations, the Mg 
content fluctuation in the barriers appears as the main factor leading to the rather low transfer efficiency value of this 
prototype device. This value can be strongly enhanced by optimizing the design and growth of the QCD structure. 
 

7. CONCLUSION 
 
We have demonstrated the first QCDs based on m-plane ZnO/ZnMgO QWs grown by molecular beam epitaxy. The TM-
polarized ISB absorption in the active QWs is peaked at 3 µm wavelength, blue-shifted from the target wavelength of 3.7 
µm because of the depolarization shift. The QCD sample has been processed in the form of 260 square mesas with 
various mesa sizes. Special attention has been dedicated to the mesa facet passivation. I-V characteristics reveal that 86% 
of the devices are operational and that the surface leakage current is negligible at room temperature, which is not the case 
at 77 K. Photocurrent spectroscopy reveals a photocurrent resonance at 2.8 µm wavelength, i.e. slightly blue-shifted with 
respect to the ISB absorption peak. The photocurrent persists up to room temperature. The calibrated peak responsivity at 
77 K amounts to 0.15 mA/W under irradiation at Brewster’s angle of incidence. The transfer efficiency of electrons 
between successive periods is estimated to be around 1.15 % and could be enhanced by optimizing the design and 
growth of the QCD structure. 
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